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Statistical Mechanics of Hard Ellipsoids. I. 
Overlap Algorithm and the Contact Function 
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A contact function for two arbitrary ellipsoids is derived. The numerical value of the contact 
function is less than 1 if they overlap, and greater than 1 if they do not. This extends previous 
work by Vieillard-Baron, who derived an overlap criterion for spheroids without use of a con- 
tact function. The equivalence of the two criteria has been checked by extensive numerical test 
with spheroids. It is shown that the use of the contact function greatly facilitates the 
calculation of the pressure in Monte Carlo simulations. 0 1985 Academic Press, Inc. 

1. INTRODUCTION 

The modeling of molecules by hard bodies plays a key role in statistical theories, 
because the spatial exclusion due to harsh repulsive forces is the dominant factor in 
determining the fluid structure as measured by the pair correlation function. For 
atomic fluids, the idea of a reference system of hard spheres appeared long ago in 
the work of van der Waals [ 11, and now forms the basis of quantitatively successful 
perturbation theories [2,3]. 

In choosing hard core shapes for modeling molecular fluids the following criteria 
are relevant: 

(a) degree of approximation to the actual repulsion, 

(b) generality, 
(c) required number of geometric parameters, 

(d) ease of deciding whether or not two cores overlap. 
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Most existing calculations are for cores composed of two fused hard spheres [4-61, 
which are the simplest model with respect to criterion (d). Other calculations use 
spherocylinders [7, S], where the overlap decision is somewhat harder, but still 
tractable. The model of hard ellipsoids is excellent with respect to criteria (a), (b) 
and (c). The difficulty of deciding overlap has so far discouraged its use. 

In this paper we derive a numerically convenient algorithm for deciding overlap 
of two ellipsoids A and B. This is done by constructing a positive function F,,( 1, 2) 
with the following property: 

FAAL 2) 
j ;: j ’ 

1 if A and B 
i,“l,,lap. ( ’ (1.1) 

are externally tangent 

This improves on the overlap crriterion for spheroids derived by Vieillard-Baron 
[9]. The latter result is not of the form (1.1) and therefore is inconvenient in 
simulation studies. 

2. ONE ELLIPSOID 

The desired contact function FAB( 1, 2) is obtained with the aid of a function 
FA(r - ra, Q,), which refers to a single ellipsoid A, specified by the location rA of 
its center, and the angles Q, which express the orientation in space. The function 
FA is required to be non-negative and to satisfy 

F,Ar - rAy QA) 

inside A 
on the surface ofA 

outside A 
(2.1) 

The choice of FA is not unique, but an obvious simplest choice suggests itself, 
namely, 

FA(r-rA,QA)=(r-rA)TA-‘(r-rA), (2.2) 

where T indicates the transpose, rA is the center of the ellipsoid, and A is the matrix 

Ata, I= 1 RiW, 1 RT(fJ, ), (2.3) 
i=l 

where the R, are the semiaxis vectors. Corresponding to the R, we define unit vec- 
tors ui = RJR,. 

In practice these unit vectors are specified by applying a Cartesian rotation matrix 
S(Q,) to the space fixed-unit vectors, 

Uj(a.4)=S(Q,4) ei, (2.4) 
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and therefore 

A@,) = W-J,) ~~‘G-?zi), A= i Rf e,eF. 
i= 1 

(2.5) 

A and A-’ are symmetric and positive definite. 

3. OVERLAP OF Two ELLIPSOIDS 

We define a function 

F(r, A) = J.F,Jr) + (1 - 1) F,(r), (3.1) 

which depends on the positions rA, B r and orientations 52,, 52, of two ellipsoids A 
and B. The dependence on these parameters has been suppressed in (3.1), since we 
hold them fixed in studying the dependence of F(r, 1) on r and il. 

In all of the following the parameter 1 is restricted to the interval 0 < 16 1, so 
that we have F(r, 1) b 0. For fixed 1, the function F(r, A) has a unique minimum as 
a function of r. For ,? = 0 the minimum F= 0 occurs at r = rB, and for J = 1 it is 
F = 0 at r = ra. For intermediate values of A, the location of the minimum of F is 
determined by 

or explicitly 

VF(r, 2) = 0, 

LA-‘(r-rA)+(l-1) B-‘(r-r,)=O. 

(3.2) 

(3.3) 

The solution r(J) is expressed conveniently in terms of the matrix C defined by 

C(,I)=[nB+(l-L)A]-‘. (3.4) 

The existence of the inverse taken in (3.4) is guaranteed by the positive definitive 
property of A and B. Alternative forms of the solutions of (3.3) are 

r(L) - rA = (1 - 1) ACr,,, (3.5) 

r(n) - rB = -J.BCr,,, (3.6) 

where r AB=rB-rA. Insertion of this solution in (3.1) and use of (3.4) yields an 
equation for F[r(A), A], 

F[r(l), A] = I( 1 -A) rlB Cr,,. 

This convenient form does not contain r(2) explicitly. 

(3.7) 
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Our quest for a contact function requires knowledge of the behavior of 
F[r(A), A] as 1 varies from 0 to 1. This in turn calls for knowledge of the path 
traced out by r(A) in the process. 

In the region outside both ellipsoids we have F(r, A) > 1. If A and B do not 
overlap, then the path of the minimum must certainly traverse this region, so that 
F[r(l), %] attains values greater than 1 in 0 < A < 1. If A and B overlap, then we 
have F(r, A) < 1 in the shared region A n B for any value of A in 0 6 A < 1. Hence, 
the minimum value F’[r(A), A] is certainly less than 1. This means that the path r(A) 
cannot enter the region outside both A and B, and therefore must traverse A n B. 

These considerations suffice to show that we have 

ota,x, W-(4,4 1 f: 1 1 for A and B externally tangent ) ~~~~e~~ping 1. (3.8) 

In order to declare this maximum a suitable contact function we need only to show 
that the maximum in 3, is unique. 

The condition for a maximum as a function of A is 

1 = 0, I = r(l) (3.9) 

where r’(A)=dr(J)/dL In view of (3.2) this becomes 

FA[r(L), A] - F,[r(L), A] = 0. (3.10) 

The geometric interpretation of (3.10) is noted later. In order to establish the uni- 
queness of the maximum, we compute the second derivative, 

d*FCr(n), 21 
dA* 

= 2[(r - r,)=A-’ - (r - rg)T B-‘1 r’(L). 

By the use of (3.4) and (3.5) this becomes 

d2f’Cr(n), 21 
dA2 

= 2r:, C(I) r’(A). 

Differentiation of (3.3) yields a relation for r’(n), 

[IA-’ + (1 - 1) B-l] r’(L) = -C(n) rAB. 

Elimination of r’(L) between (3.12) and (3.13) leads to the explicit result 

d’f’Cr(n), 21 
dl* 

= -2r;,C(I)[IA-’ + (1 -A) B-‘1 C(n) rAB, 

(3.11) 

(3.12) 

(3.13) 

(3.14) 
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which is negative definite. The concavity of F[r(A), A] in A. implies the uniqueness of 
the maximum in the interval 0 < 3, < 1. Therefore, the desired contact function FAB 
is 

FAB(rABy fi,, Q,) = oy;:l FCr(A), Al. (3.15) 
. . 

The contact function has a geometric interpretation in terms of ellipsoid scaling, 
defined as expansion or contraction of all linear distances of the ellipsoid by a 
positive scale factor p, while holding the position of the center and the orientation 
in space constant. For i = A or B, F,(r) = II: represents a scaled ellipsoid with linear 
scale factor pi. Since VF,(r) is in the direction of the normal to the scaled ellipsoid 
through r, the path r(A) as defined by (3.1) and (3.2) represents the locus of points 
of external tangency between scaled ellipsoids with linear scale factors given by 

FACr(J-), Al= &, f’,Cr@), Al= 14. (3.16) 

The condition (3.10) which determines the maximum of F[r(l), A] selects the uni- 
que point on the path of r(A) for which the scale factors are equal, pA = ,uLg. 

The end result is 

FAshBp Q,, Q,) = CL23 (3.17) 

where p is the common linear scale factor that must be applied to A and B in order 
to secure external tangency. 

4. THE PRESSURE IN TERMS OF THE CONTACT FUNCTION 

The contact function, introduced as a criterion for overlap, plays an additional 
important role in the calculation of the pressure from Monto Carlo configurations. 

The standard result used to obtain p is the virial equation of state, deduced by a 
scaling of all lengths. The periodicity of the Monte Carlo system does not affect the 
derivation. For the special case of hard particles we have 

(4.1) 

where T is the Kelvin temperature, k Boltzmann’s constant, p the number density, 
and pc2) is the non-normalized orientation-dependent pair distribution function. 
The surface of contact S, is traced out by rAB as B moves over all contact con- 
figurations with A, at fixed rA, 52, and 52,. The unit normal n is outward for A and 
inward for B. 

In dealing with Monte Carlo cordigurations, the integral over the contact surface 
S, must be approximated by counting near-contact configurations within a thin 
shell surrounding S,. The thickness of the shell should be small enough to make the 
effect of n . Vpc2’( 1,2) negligible. 

581/58/3-9 
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Away from the low-density limit, the function pc2’(r,,, Q2,, QB) at constant Q, 
and G?, still depends on the position vector rAB on the contact surface S,(Q,, a,). 
This variation of pc2’( 1, 2) over S, imposes the constraint that the proportionality 
of the integral over the shell to the integral over S, must be satisfied for each direc- 
tion of rAB separately. For a shell of infinitesimal thickness dr(r,,) with weight 
function w(rAB), we must have 

w(rAB) dt(r,,) = constant x ras. n(rAB). (4.2) 

The easiest way to satisfy this is the adoption of constant w  with dt(r,,) propor- 
tional to rAB. n. Such a shell thickness is provided in a natural way by the contact 
function. As a consequence of (3.16), the shell thickness between two neighboring 
shells 

is given by 

JT.dkJ = p2 and b(rAB) = (P + 4d2 

4rAB) = fAE. n(c.4 4. (4.3) 

For a shell offinite thickness we still obtain a very simple result, as long as neglect 
of the variation of pf2) in the rAB -direction is justified within the shell. Take the shell 
between the two surfaces FAB(rAB) = 1 and FAB(rAB) = p2 and a narrow cone of rays 
surrounding a given direction r. Let 6V be the volume element that is in both the 
shell and the cone, and let 6S, be the surface intercepted by the cone on 
FAB(rAB) = 1. For an arbitrary weight function w(p), which is independent of the 
position r on the surface of constant p, we have 

~~ylll(p)dl=c:(w(x)x2dx~ r.n(r)dS,. 
.Tl 

Specialization of this exact result to w(p) = 1 results in the approximation 

(4.4) 

For the limiting case of constant pt2’( 1,2), Eq. (4.5) is exact for any shell thickness. 
The error due to non-zero Vp”‘( 1,2) is of order (p - l), since both the shell 
thickness and the error in pc2’( 1,2) are of order p - 1. 

5. THE OVERLAP ALGORITHM IN SIMULATION 

The best implementation of an algorithm depends on its intended use. Our 
primary interest is in application to Monte Carlo simulation. Here, each step entails 
selecting one of the N particles, translating and rotating it by a small amount, and 
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then testing it for overlap with any of the other N - 1 particles. If an overlap is 
detected, the move is rejected and a new particle is chosen. The size of the moves is 
adjusted so that about half the moves are accepted. This implies that the outcomes 
of the test have non-overlaps outnumbering overlaps in a ratio of roughly 3N/2 to 
1. Therefore, the overriding concern is fastest possible establishment of non- 
overlaps. This is accomplished by stepping toward the maximum in 1 of F[r(J,), A] 
by an iteration technique, “Localmin [lo],” which finds the maximum with order 
of convergence 1.3247. As soon as a value F[r(l), A] > 1 is found, non-overlap is 
established, and the search for the maximum is broken off. 

A comparison of our algorithm against the overlap criterion of Vieillard-Baron 
[9] on 10’ random configurations resulted in identical decisions in all cases. For 
over 90 percent of non-overlaps the initial guess of I = $ resulted in decision by 
F[r($ $]> 1. 

6. COMPUTATION OF THE CONTACT FUNCTION 

The iterative calculation of the contact function entails calculation of C(1) for 
successive values of 1. This may be done by taking the inverse in (3.4) numerically, 
or by using the characteristic equation to convert it into a polynomial. Any matrix 
M satisfies the equation 

(6.1) 

where d is the dimensionality, here d = 3, To = 1, and T, for s > 0 is the sum of the 
determinants of the s x s principal minors, of which there are d!/s!(d- s)!. From 
(6.1) we obtain 

d-l 

~~o(-I)'"-lT,(M)Md-')IT,(M). (6.2) 

We are dealing with a matrix of the form M = G + H, and need to rewrite the 
T,(M) in terms of the matrices G and H. The results required for d = 3 are 
obtained by straightforward manipulation. We find 

T,(G + H)= T,(G)+ T,(H), (6.3) 

T,(G+H)=T,(G)+T,(H)+T,(G)T,(H)-T,(GH), (6.4) 

T,(G+H)=T,(G)+T,(H)+T,(G)T,(H)+T,(H)T,(G) 

- T,(GH)[T,(G)+ T,(H)I+T,(G2H)+T,(GH2). (6.5) 

All of the T*s can be expressed in terms of scalar products of the unit vectors U,(A) 
and ui(B). 
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We quote the explicit result for two identical spheroids with R, = R,, R, = eR,. 

We have 

R;C(A) = I + m,(A) Use + B+(B) u,(B)~ 

+ YCh(A) umT + b(B) U3(A)TI? (6.6) 

where I is the unit matrix and 

cr=x(l -y)/D, B=J41 -x)/R Y = XYU,(A). u,wa 

D= (1 -x)(1 -Y)-XxyCU,(A).U,(B)12, 
x= (1 -A)(1 -e2), y=l(l -e’). 

By using this form in (3.7), F[r(A), A] is computed rapidly, 

(6.7) 

(6.8) 

(6.9) 
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